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In this paper we derive a general computational scheme for the calculation of the non radiative 
decay probability of a polyatomic molecule in the statistical limit. Within the framework of the 
Harmonic Approximation the relaxation rate of any polyatomic molecule can be expressed in terms 
of an infinite sum where each term consists of a medium distribution function and an intramolecular 
term. In the statistical limit the medium induced vibrational relaxation widths do not affect the non 
radiative decay characteristics. Numerical calculations are reported for the T I ~ S  o intersystem 
crossing in the benzene molecule. 
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1. Introduction 

This paper  is concerned with some features of the electronic relaxation of a 
large molecule in a dense inert medium. Adopting the definition of the inert 
medium presented in previous work [1, 2-] the non radiative decay characteristics 
of a statistical large molecule can be affected by the medium as follows: 

(a) The medium may provide accepting modes for the electronic relaxation. 
(b) The medium provides a mechanism for vibrational relaxation in the final 

intramolecular quasicontinuum. 
(c) The medium provides a loss mechanism for vibrational relaxation in the 

initial electronic manifold. 
The coupling between electronic and vibrational relaxation in large molecules 

has been recently considered by us [3]. We were able to demonstrate that when 
the vibrational relaxation is slow relative to electronic relaxation (as is the case 
for some ultrafast processes) the non radiative decay involves the initially excited 
level, while in the limit of fast vibrational relaxation a Boltzman averaged (over 
the initial states) non radiative transition probability is obtained. Thus the 
implications of the vibrational relaxation in the initial electronic manifold 
[effect (C)] were elucidated. It was pointed out [1,4] (but not proved) that 
vibrational relaxation in the final electronic manifold of a statistical molecule is 
unaffected by vibrational relaxation in the final manifold. 

The purpose of this paper  is twofold: 
(a) F rom the point of view of general methodology we shall demonstrate 

tha t  for a molecule which corresponds to the statistical limit the vibrational 
relaxation in the final vibronic manifold does not affect the non radiative decay 
characteristics, and does not modify the expressions previously derived [1] which 
did not include this effect. 
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(b) From the technical point of view we shall provide a computational scheme 
for the evaluation of the non radiative decay probability of a statistical molecule 
by the generating functions method. This method was briefly outlined and applied 
by us [5]. In view of recent criticism of our approach [6] we would like to provide 
a complete justification for this technique. 

2. Non Radiative Decay Probability 

We shall consider the model two electronic level system previously described 
[1] and invoke the following simplifying assumptions: (a) The medium does not 
provide accepting modes, and its effect can be subsummed to add a vibrational 
relaxation width F so that the generating function is modified by an exponential 
damping term [2]. Thus we consider the decay of a zero phonon molecular line. 
This restriction will be relaxed in Section 3. (b) We consider the fast vibrational 
relaxation limit whereupon in the low temperature limit the non radiative decay 
probability corresponds to the relaxation of the vibrationless level in the initial 
electronic manifold. 

The non radiative decay probability of a molecule in a Shpolskii matrix can 
be expressed in the form 

1 
~ o  = ? ~ -  y, IC~,I 2 I~ (2.1) 

where C.% is the electronic coupling matrix element between the two electronic 
states induced by the promoting mode ~. In the Harmonic molecular model the 
vibrational integral I~ is determined [1, 5, 7, 8] in terms of a Fourier transform of a 
function F(fiv, Av, exp(icovt)) of the molecular frequencies c%, the origin dis- 
placements of the normal modes A. and the frequency ratios ft. between the two 
electronic states 

I~= ~ dtexp[-iAE~t/h-FltL/2h]F(~,A~,exp(ico.t)) (2.2) 
- - o O  

where A E. = A E -  h~% is the effective energy gap and where F is the (average) 
width of the level in the quasicontinuum manifold [2]. In the simple model of 
displaced identical energy surfaces 

F(fiu, A., exp(ia), t))= exp (-�89 ~ A•) exp [�89 ~ A] exp(ioo, t)] (2.3) 

while in the case of displaced potential surfaces involving frequency changes 

{ / [[] _1] ( 1 -  fl.)2 [ 1 -  exp (2 i c% t)] F =  (flu) " 1+ 4fi~ 

u{ x 1+ (l-flu)2 [1-exp(2imut)]  (2.4) 

fl.A~[1-exp(ioo.t)] ~. 
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The mathematical problem is thus reduced to the evaluation of the integrals 1~. 
Several attempts have been reported to perform these integrations by the saddle 
point method [1-7] (assuming that A E is sufficiently large). This procedure is 
valid for the statistical limit only in the case of displaced identical potential 
surfaces. When frequency changes as well as unharmonicities are included it was 
found necessary to perform a power expansion in the exponential function of (2.4), 
in order to apply the saddle point integration [1, 7-9]. It can be demonstrated 
(see Appendix A) that this expansion method, retaining low order terms is un- 
justified. This conclusion was also supported by numerical calculations performed 
by us. Thus when more complicated (and more realistic) physical models are 
introduced the saddle point method is inapplicable. Furthermore, the saddle point 
method cannot be applied when the exponential damping term exp(-FIt l)  is 
present in the Fourier integral (2.2). Thus we conclude that alternative numerical 
procedures are required for the evaluation of the non radiative decay probability. 

We shall now introduce a normalizing frequency, co N, so that the numbers 

&, = co,/co N (2.5) 

are integers for all/,. It should be noted that the definition of con is not unique. 
In particular it is important to notice that for the set {cop} (expressed as integers in 
arbitrary units and given for any available experimental accuracy) we can define 
the largest common integer divider a ~  "x. We shall also define the reduced 
quantities 

e~ = A E• N (2.6) 

and ? = F/h con (2.7) 

x -= coN t.  (2.8) 

Eq. (2.2) may be recast in the form 

I~- 1 j dxexp(-ie~x-?lxl/2)F(fiv, Aa, exp(i&vx)). (2.9) 
coN - oo 

Making use of the relation 

1 7 
exp(-ylxl/2)= ~ -co dyexp(-iyx) y2+(y/2)2 . (2.10) 

Eq. (2.9) may be rewritten in the form 

1 S dy 7 ~ dxexp[_i(e,~+y)x]F(flu, Au, e~CO,~) 
I,~ - 2rt co u _ oo y2 + (7/2)2 _ oo 

(2.11) 

As the numbers (5~ are integers it is easy to perform the integration over x, which 
yields (Appendix B) 

1 ~ dxexp[-i(e~+y)x]F(tg,,A,,exp(igo, x))=Io(e~+y) ~ 6(e~+y-s) 
con - ~ s= - ~ (2.12) 
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where 

io(z)= 1 2~ co-~ ~ o dx e x p ( - i z x )  F(fi., A., exp(i&,x)). (2.13) 

Inserting Eqs. (2.12) and (2.13) into Eq. (2.11) and performing integration over y 
we obtain 

1 
~, lo(s) 7 (2.14) 

Ix - 2re ~= _ | (e, - -  S) 2 "-~ (7/2) 2 " 

Thus the non radiative decay probability of a zero phonon line can be expressed 
in terms of the infinite sum (2.14) where each term involves a medium induced 
Lorentzian distribution and a (finite) integral of the intramolecular generating 
function. This result is general, being valid both for the statistical limit and for the 
small molecule case. 

3. The Statistical Limit 

Within the framework of the present theoretical scheme the statistical limit is 
characterized by the inequality 

F >> 09~ ax (3.1) 

where co~ a* is the largest common integer divider of the frequencies. Eq. (3.1) is 
equivalent 1 to the more physically transparent inequality 

F ~ Q- 1 (3.2) 

in which Q is the density of non-degenerate levels in the final manifold. The last 
inequality is easily recognized to be the condition for the smoothness of the non- 
radiative line-shape function (with F 1 = F) which is the Freed-Jortner definition [4] 
of the statistical limit. 

If A E >> F which is always the case we now have 

e~>> 7 >> 1. (3.3) 

Eq. (3.3) implies that the summation in Eq. (2.14) may be replaced by an integration, 
so that 

1 
ds Io(s) 7 (3.4) 

I~ - 2~ _ .  (e. - s) 2 + (7/2) 2 " 

NOW, if Io(s ) does not change appreciably within the Lorentzian width 7 we may 
take it outside the integral at the point s = ~,  getting just I x = Io(e.). The condition 
for the slow variation of Io(e~) is 

(,  /ol . . . .  7 < 1. (3.5) 

1 Provided that the energy gap A E is large enough. (The necessary condition may be shown to be 
A E/hcou ~> o~/2t-'d where cog is the largest molecular frequency and ~ '~  is the average difference 
between the molecular fl'equencies.) 
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For the sake of an order of magnitude estimate we invoke the approximate result 
of Engleman, Freed and Jortner [1] for Io 

Io (e~) oc exp ( - eJh (5~t) (3.6) 

where cSM is the totally symmetric mode of maximum frequency, the condition 
(3.5) leads to 

F/h c%t ~ 1. (3.7) 

It may thus be concluded that under the conditions [Eqs. (3.3) and (3.5)] 

hco~ ~x ~ F ~ he% t ~ A E (3.8) 

the non-radiative ,decay rate of an excited electronic state in the statistical limit 
may be computed by expressing the integral (2.2) in the form 

1 2~ 
I~ = Io(~.) = ~ d x e x p ( - i e , , x ) F ( f l u ,  A,,exp(iCoux)). (3.9) 

(DN 0 

It is importanl: to notice that Eq. (3.9) clearly demonstrates that the non- 
radiative decay rate in the statistical limit is independent of the width F of the 
levels in the dissipative {[lj >} intramolecular manifold. Such assumption has been 
silently invoked in many previous works which dealt with non-radiative transitions 
in large molecules embedded in an inert medium [1, 5-9].  

So far we have been focusing attention on the non-radiative decay of a zero 
phonon line of a statistical molecule in a matrix. Our conclusion concerning the 
independence of the non-radiative decay rate on the vibrational relaxation width 
pertains only to a large molecule in a Shpolskii matrix. We have stated in Section 1 
that direct coupling to medium modes is of minor importance in the statistical 
limit, where the decay rate is dominated by the larger molecular frequencies [1]. 
This argument may be presented in a more quantitative manner by considering 
the decay rate of an initial [sims> level (where i and m~ denote molecular vibrational 
state and medium vibrational state, respectively). We assume that the medium 
provides only promoting modes, so that the non-radiative decay probability is now 

1 
Wsims = ~ -  2 Iraqi 2 ~ lVsi,,,~,tjm,l 2 

~,,,, (3.1o) 

x g(A E~ + E~ - Ej + Era, - Era,) 

where E i and E~ are the vibrational energies of the molecule in the s and in the 
I electronic states, respectively, while E .... and E,,, denote medium vibrational 
energies. Igsim~,/j,,~l z is the appropriate Franck Condon (FC) factor which may 
be factorized into a product of a molecular (FC) factor and a medium (FC) factor. 

IV~i,,~,tjm~] 2 = IVsi, rjl 2 IVm~,m,I 2 . (3.11) 

Eq. (3.10) may now be recast a convolution 

1 
W~,m~ -- 2 h r  ~ IC~tl 2 ~ dEF(AE~ - E) G(E). (3.12) 

g 
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The functions F(E) and G(E) are easily recognized as the vibronic line-shape 
functions which correspond to the intramolecular and the medium modes, 
respectively. 

F(A E. - E )=  ~ I v~, d 2 c~(A g .  - E + E i -  gj) (3.13 a) 
J 

G(E) = ~ IV~,,m,I 2 6(E + E,~,- Era). (3.13 b) 
tn l 

In a Shpolskii matrix G(E) = 6(E) and we regain the former result (Section 2). 
Now, also in a non-Shpolskii matrix and even in the strong medium-molecule 
coupling limit [2] G(E) is a narrow function of E around E = 0 relative to F(E). 
The characteristic width of G(E) is about < 1000 cm-  ~ while F(E) is nearly constant 
(around E = A E.) within this range. We thus may take F(A E~- E) out of the 
integral in Eq. (3.12) at the point E = 0, obtaining 

Wsims "~- Wsi 2 IVm,,m,I 2=  W~, ~ I(m~lmt)12 = W~, ( 3 . 1 4 )  
tit l tn I 

where W~ is the decay rate of the vibronic level si in a Shpolskii matrix, or rather in 
an isolated molecule. 

We have thus demonstrated that a direct coupling to the medium degrees of 
freedom does not modify the decay rate of a statistical molecule. 

4. Numerical Procedures 

We proceed to discuss some mathematical manipulations of the non-radiative 
decay rate, which in the statistical limit can be expressed in terms of the integral 
(3.9). When the functional form of F([3~,A~,d e~ allows the application of the 
saddle point method, Eq. (3.9) provides the mathematical justification for taking 
the contribution of only one saddle point of the integrand in Eq. (2.2) or (2.9) (where 
F = 0). To exhibit the difficulty encountered in the original approach we may 
consider the zero temperature limit of the non-radiative decay rate in the displaced 
potential surfaces model, where Eq. (2.9) takes the form [neglecting the factor 
exp( - 7 Ixl/2)] 

I X- con -~  dxexp - ie~x+ ~, yA u l  2 exp(icbux) (4.1) 

where now e~=(AE-hm,)/hcoN. The saddle point approximation up to first 
order yields 

exp (zf(x)) dx = ~ exp (zf(x,)) -7;,, " (4.2) 
- z f  (x,)J 

where f(x) is an oscillating function of z > 1 and where x~ are the saddle points 
of f(x). In Eq. (4.1) we have 

z=a~;  f (x)= - i x  + --1 ~ �89 A~ exp(i&~,x) (4.3) 
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so that the equation for the saddle points is [1] 

�89 Z A~&u exp(i&ux) = g~. 
# 

(4.4) 

Provided that x o is a solution of Eq. (4.4) then every x, which satisfies 

x,=xo+2rcn ; n = 0 ,  _1 ,  + 2  . . . .  (4.5) 

is also a solution of this equation. If the normalizing frequency con will be taken 
as the largest possible one, co~% then Eq. (4.5) spans all the solutions of Eq. (4.4). 
Any interval of the length 2re on the real x axis corresponds to one and only one 
solution x, whose real part lies in this interval. The solution which corresponds, 
say, to the interval (0, 2~z) was obtained by Freed and Jortner [1]. Denoting this 
solution by Xo and its contribution to the sum in Eq. (4.2) by Io(e~), it is easy to 
show that 

I~=~o(~) ~ exp(-Z~zine~)=Io(e~) ~,, 5(e~-s) (4.5) 

which is equivalent to Eq. (2.12). The justification to replacing Eq. (4,5) by the 
equality I = Io(e~) is provided by Eqs. (3.1-3.9). 

Eq. (3.9) constitutes a convenient starting point for numerical computation 
of the non-radiative decay probability. It is easy to see that as e~ in Eq. (3.9) is an 
integer (as energy conservation is expected2), Eq. (3.9) is independent of the 
chosen normalizing frequency cnN. This fact suggests the following approximate 
numerical procedure: 

1) A E~ and {c%} will be approximated by integers chosen so that they all 
have a large common integer divider. 

2) The largest common integer divider of A E~ and of {co,} will be applied for 
the calculation of the integral (3.9). 

3) The integral in Eq, (3.9) will be computed numerically using any con- 
ventional numerical integration method. As, according to (1) and (2), ~ and {&u} 
are relatively small numbers, (for example, choosing ~oN = 50 cm - r in calculating 
the intersystem crossing 3Blu~lAto rate in Benzene, performed in the next 
section, we have s~ = 600 and {c%} = 10-60) the integrand in Eq. (3.9) is not a 
strongly oscillating function [as, for example, the integrand in Eq. (2.2)] and the 
integral is easily evaluated by numerical methods. 

It should be noted that the choice of a large value of cou for the computation 
of the integral (3.9) should not be confused with the inequality (3.1), as this 
inequality has provided the ideological basis for deriving the result in the sta- 
tistical limit [Eq. (39)] while now we are just engaged in approximate numerical 
calculation of the integral in this equation. 

We shall now proceed to apply this technique to a real physical system. 

2 It may be shown, in fact, that ife~ is not an integer, Io(g~)=0. This should not worry us as from 
Eq.(3.1) it is clear that e~ should be taken as the integer closest to the real value of A EJhoou, 
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5. Intersystem Crossing (T~ ~ So) in the Benzene Molecule 

The procedure outlined in the previous section will now be utilized to compute 
the intersystem crossing rate from the vibrational level of the 3Blu electronic 
state of the Benzene molecule to the ground electronic A10 state, utilizing Eqs. (2.1), 
(2.2) and (2.4) for the non-radiative decay rate and making use of the molecular 
parameters given by Burland and Robinson [10]. This transition is characterized 
by two promoting modes (C stretching, co~ = 1 3 1 3 c m  -1 and H bending, co2 
= 1147 cm-  1 which are characterized by a b2, symmetry); by two totally symmetric 
modes of non-vanishing origin displacements (C-H stretching, co = 3063 c m - 1  
A =0.3, and C-C stretching, co= 990cm -~, A = 1.1), by the frequency changes 
tabulated by Burland and Robinson [10] and by an energy gap, A E = 29650 cm-  1. 

Making use of the procedure outlined in Sections (2) and (3) the non-radiative 
decay probability is [I b] 

1 

t u  J 

where 

1~ = - -  S dx e x p ( -  ie,~ x) 1 + (1 -/3~)2 [1 - exp(2i&~x)] 
con 0 4fl~ 

x 1 + 4fl u [1 - exp(2i&~x)] 

fiuA~[1 .exp(/cbux)]  .~ 
x e x p { -  ~ f lu+l+( f lu_l )exp( i&ux)  J 

where now 
A E + hS, u,5~-) - hco~ 

~• = hcoN 

(5.2) 

(5.3) 

in which 6~. -~ is the difference in frequencies between the two electronic states. 
In order to check our numerical method we have chosen cox---500 cm -1, 

50 cm -1 and 10 cm-1, modifying each time the molecular frequencies and the 
effective energy gap so that e~ and {cb.} are obtained as integers. As a rule, e~ and 
{cBu} were chosen to correspond to the integers closest to the values of 
(AE-h~u 3cu-)-hco~)/hcoN and of {cou/coN} respectively. 

From the results summarized in Table 1 we may conclude that our mathe- 
matical approximation is valid. In particular, we note that the results are 

Table 2. Average values for the integral I~ for C6H6 

ooN cm-  1 500" 50 10 

Average result for mode 1 (cm -1) 1.7 • 10 -16 7.0 • 10 -17 7.3 x 10 -17 

Average result for mode 2 (cm- 1) 1.4 x 10-16 6.0 x 10- iv 7.2 • 10-17 

a The relatively large average in the case of oN = 500 evolves from the contribution of the "low" 
28 500 cm - 1 gap. 
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-12  ~ , ~  I I I I I I 
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- 

2 5 0  260  270  280  2 9 0  300  310 320  3 3 0  
(&IE x lO-2 }  cm -I 

Fig. 1, The energy gap law in the low temperature limit of the 7"1 ~ So transition in the benzene 
molecule. These results were obtained by numerical integration of Eqs. (5.1) and (5.2) using the spectro- 

scopic data of Burland and Robinson (Ref. [10]) 

practically insensitive to the choice a of co~r Taking for each co~r the average of the 
five results (displayed in Table 1) we obtain the final values summarized in Table 2. 
The physical implications of these numerical computations may be summarized 
as follows: 

a) The inclusion of frequency changes is crucial for a semi-quantitative 
calculation of the non-radiative decay rate. The numerical results obtained from 
Eq. (4.2) with 1~ taken as unity for every #, are three orders of magnitude lower 
than the results displayed in Table 1. 

b) The energy gap law is retained (Fig. 1), but the decrease of the non-radiative 
decay rate as a function of increasing the energy gap is slightly modified when 
frequency changes are included. The energy gap law may be approximately 
represented by the relation 

W~o ~ A exp ( - 7 A E /h  con) 

where from Fig. 1 we obtain ~ ~ 4, while for the displaced undistorted potential 
surfaces model we have 7 = 2 [1]. This result is reasonable, as with the inclusion 
of frequency changes the contributions of low frequencies which are strongly 
modified in the electronic transition, becomes more important. 

c) Following Fischer and Schneider [gb] we may add a displacement of 
A = 0.9 for the e2o (1584 cm- 1) C--C stretching mode. This modification causes an 
increase by a numerical factor ~40 in the calculated non-radiative decay rate 4. 

d) Repeating the calculation of Eq. (4.2) using Burland and Robinson's data 
[i0] for the C6D 6 molecule we obtain �89 [ I  ft.- t/2/1 = 9 x I0-21 cm-1; �89 [ I  fi21/2 [2 

# # 

= 4x  10 -zt  cm -~. We may conclude that the non-radiative decay rate of C 6 D  6 

is lower by about four orders of magnitude than that of the C6H6 molecule. 
e) Utilizing the results of Table 2 and taking Csz=l .6x  10-1cm -1 [10] 

we may calculate Ws0 for the T1 - So intersystem crossing in the benzene molecule. 

3 The fluctuations of the result as functions of A E should not worry us as they just represent 
the non-uniform distribution of {L/j)} levels resulting from the "round off" approximation. This effect 
is most profound when we choose o N = 500 cm-1. 

4 The increase is much more profound (about three orders of magnitude) in the case of deutro- 
benzene. 
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Table 3. Theoretical intersystem crossing rates in the benzene-H 6 and benzene-D6 molecules 

C6H 6 C6D6 

Present work 7.2 x 10 .7 sec -1 6.6 x 10 -11 sec -1 

i l ; ; l O : ; a  . . . . . .  

Burland and Robinson [-10] 9.04 x 10- 5 sec- 1 1.18 x 10-10 sec- 1 

Fischer and Schneider [-9] 7.4 • 1 0  - 4  s e c  - 1  3.1 x 10 -s sec -z 

Experiment [,-10] 2.4 x 10 .2 sec -1 

Using Fischer's and Schneider's data for the displacement of the ezg deformation mode. 

Our numerical results together with previously obtained results of Burland and 
Robinson [10] and of Fischer and Schneider [gb] are summarized in Table 3. 
The results of Burland and Robinson are based on an approximate level counting 
procedure. The results of Fischer and Schneider, which are obtained from a 
formalism equivalent to ours attempting to incorporate both frequency changes 
and unharmonicities are doubtful, as they are based on the unjustified expansion 
discussed in Appendix A. 

The results presented in Table 3 should be compared with the experimental 
result [10] Wso ~ 2.4 x 10 -1 sec- 1. The difference of about three to four orders of 
magnitude is probably caused by the neglect of unharmonicities [13, 10]. 

We have obtained the worst agreement reported up to date between theory 
and experiment for the T1--* So non-radiative decay probability in the benzene 
molecule. However, we feel that the numerical results presented herein provide 
the first correct calculation of the non-radiative decay probability of a harmonic 
molecule. It is not surprising that the neglect of unharmonicities yields a rather 
serious underestimate of the decay rate. At present no systematic valid procedure 
is available for the incorporation of unharmonicities. (The Fischer Schneider 
procedure [9] is unfortunately invalid in view of unjustified expansions of the 
generating function.) People interested in this field should attempt to derive the 
density matrix (i.e., the Green's function [11]) for an unharmonic oscillator and 
use this result for the evaluation of the generating function. 

The goal of theoretical chemistry is not to reproduce experimental results but 
rather to provide general relations and correlations. In this context, the general 
formulation of the non-radiative decay of a model harmonic molecule in the 
statistical limit is of considerable interest. 

Appendix A: A Comment on the Convergence Problem 

Lin and Berson [81, Freed and Jortner [1 b], Fischer [7] and others [6, 9] 
have used expansions of the form 

f (~  exp(ico t)) = 1 + a~ei~'t+ b~2 e2/~~ + . . .  (a.1) 
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where F is some function and ~ ~ 1 is a small parameter, in order to simplify the 
generating function obtained in the theory of radiationless transitions in the 
statistical limit. Most  of the available expressions [1, 6-8-1 for the non radiative 
decay rate of a large molecule characterized by displaced and modified potential 
surfaces and also Fischer's attempt to include unharmonicities in the theory [9] 
utilize such expansions and neglect high order terms before evaluating the 
necessary Fourier transform of the generating function. We now wish to demon- 
strate that such an approximation which neglects the higher order terms is 
unfortunately justified. To this end we shall compare the contributions of the low 
order terms which are usually retained in the approximate expression and of 
a higher order term which is usually neglected. Suppose, for example, that E/co 

is an even integer and we want to compare ~ d t e x p [ - i E t +  ~ exp(icot)] and 
--O0 

~ d t  exp[ - iE t  + ~2 exp(2icot)]. Expanding the integrand in the form 
- o o  

it is easy to get 

--00 

exp [~ exp(ico t)] = .~o---- ~ exp(inco t) (A.2) 

dt exp [ - i E t  + ~ exp(ico 0] = 2~z fi(E - no ) .  (A.3) 
nm 

In the statistical limit it may be shown that 6(E-rico) may be replaced by 
6E,,~o. This may be proved by utilizing the same procedure which leads to Eq. (3.9) 
and noting that 

2re ~n  

d t exp [ - i E e + ~ exp (i co t)] = 2rcn .-  ~- 6E.,o~. (A.4) 
0 

CE/~ where ~ will be an average over the contributions from 

(A.5) 

Thus we get 2 ~ -  

many modes. 
In the same way, we get 

-o~ dt exp[ - l E t  + ~2 exp(2ico t)] = 2re-(E/2co)------~ 

which is greater than the first result for every ~. Of course, higher order terms 
0(~") with n,> 2 lead to vanishingly small contributions. Thus one cannot get 
away by neglecting terms of the order of 0(~ 2) in the expansion (A.1), and one has 
to retain the terms up to m = (E/o). This conclusion is supported by numerical 
calculations performed by us on Eq. (4.1). 

Starting from 

Appendix B: Verification of the Identity [11.12] 

I=  ~ dxexp( - iax)F(x)  
- - 0 ( 3  

(B.1) 
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where F(x) is a periodic function of x, characterized by a period of 2~, we proceed 
as follows [-12]: 

27t(n+ 1) 

I == ~ dx e x p ( - i a x )  F(x) 
n =  - o ~  2 ~ n  

,~ ( B . 2 )  

=-- ~ exp(2rcina) ~ dxexp(-iax)F(x) 
n = - - o 0  0 

where in each integral we have replaced x by x - 2nrc. Relation (2.12) is now easily 
verified by utilizing the identity 

~, exp(2~ina)= ~ 6(s-a). (B.3) 
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